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ABSTRACT: The transformation of second-rank Cartesian tensors under rotation plays

a fundamental role in the theoretical description of nuclear magnetic resonance experi-

ments, providing the framework for describing anisotropic phenomena such as single

crystal rotation patterns, tensor powder patterns, sideband intensities under magic-angle

sample spinning, and as input for relaxation theory. Here, two equivalent procedures for

effecting this transformation—direct rotation in Cartesian space and the decomposition

of the Cartesian tensor into irreducible spherical tensors that rotate in subgroups of rank

0, 1, and 2—are reviewed. In a departure from the standard formulation, the explicit use

of the spherical tensor basis for the decomposition of a spatial Cartesian tensor is intro-

duced, helping to delineate the rotational properties of the basis states from those of

the matrix elements. The result is a uniform approach to the rotation of a physical system

and the corresponding transformation of the spatial components of the NMR Hamilto-

nian, expressed as either Cartesian or spherical tensors. This clears up an apparent

inconsistency in the NMR literature, where the rotation of a spatial tensor in spherical

tensor form has typically been partnered with the inverse rotation in Cartesian form to

produce equivalent transformations. � 2011 Wiley Periodicals, Inc. Concepts Magn Reson

Part A 38: 221–235, 2011.

KEY WORDS: irreducible spherical tensor; Cartesian tensor; rotation matrices; Wigner

rotation matrix elements

INTRODUCTION

The NMR Hamiltonian is anisotropic, giving rise to

spectroscopic lines that depend not only on local mo-

lecular and chemical structure, but also on orientation

within the static magnetic field (1–7). For example,

single crystals have resonance frequencies that are

periodic under rotation, while powdered samples of

randomly oriented crystallites give broad, but typi-

cally structured, resonances. Time-dependent modu-

lation of the orientation through sample spinning can

average the position and breadth of these peaks, but

even for samples in rapid isotropic motion, vestiges

of anisotropic interactions remain as routes to relaxa-

tion (1, 2, 5, 8).
Anisotropic interactions in the NMR Hamiltonian

are represented by second-rank Cartesian tensors

whose transformational properties under rotation play

a fundamental role in the theoretical description of

NMR experiments (1–7). Two approaches to treating

these rotations are the direct transformation of the

second-rank spatial tensor in Cartesian form and the
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decomposition of the Cartesian tensor into irreduci-

ble spherical tensor components that rotate in sub-

groups of rank 0, 1, and 2 (9–13). While these two

approaches must give equivalent results, there is an

apparent and curious need in the NMR literature to

partner the rotation in one representation with its

inverse rotation in the other to find consistency in the

final transformed tensor. Here, the transformation of

second-rank tensors in Cartesian and spherical forms

are reviewed and it is shown that discrepancies in

their sense of rotation can be reconciled by explicitly

writing the Cartesian tensor as an expansion in the ir-

reducible spherical tensor basis and taking care to

distinguish the rotational properties of the underlying

spherical tensor basis components from those of the

expansion coefficients. The result is a uniform and

consistent approach to the rotation of the physical

system and the corresponding transformation of the

spatial components of the NMR Hamiltonian,

expressed as either Cartesian or spherical tensors.

This review begins with a brief introduction to

second-rank Cartesian tensors in the NMR Hamilto-

nian and rotation matrices and operators from both

the active and passive points of view. Next, the

spherical tensor basis is introduced and explicit rela-

tions for the transformation of spherical tensor matrix

elements under rotation of the physical system are

derived. The resulting coefficient equation differs

from the customary equation used in the theoretical

description of NMR experiments, and the relation-

ship between the two is shown, highlighting the error

in the sense of rotation for the latter. A worked

example for the transformation of an ab initio chemi-

cal shielding tensor is then presented to illustrate the

consistency of this approach, before final comments

on the Hamiltonian in spherical tensor form and the

choice of reference frame.

THE NMR HAMILTONIAN AND
ROTATIONS

The general form of a term in the NMR Hamiltonian

(3, 4, 6, 7) is

Hl ¼ cl I � Al � Sl; [1]

where cl is a constant specific to a given interaction,

I is a spin angular momentum vector operator, and Sl

is another vector, which, depending on the particular

interaction, may be the same spin angular momentum

operator (quadrupolar interaction), a different spin

angular momentum operator (J coupling or dipolar

coupling), the static magnetic field (chemical shield-

ing interaction), or the molecular angular momentum

vector (spin-rotation interaction). Al is a second-rank

Cartesian tensor and is a molecular level property

that depends on local geometry, electronic structure,

and molecular orientation. For example, the Hamilto-

nian for the chemical shielding interaction has the

form,

HCS ¼ g I � s � B

¼ g Ix Iy Izð Þ �
sxx sxy sxz

syx syy syz

szx szy szz

0
B@

1
CA �

0

0

Bz

0
B@

1
CA

¼ g IxsxzBz þ IysyzBz þ IzszzBz

� �
; ½2�

for the static, laboratory-frame magnetic field aligned

along the z-axis. The chemical shielding interaction

results from currents in the electron density induced

by the external magnetic field, which in turn produce

an additional magnetic field that interacts with the

nuclear spin. Although the induced field is not neces-

sarily aligned along the lab-frame magnetic field, it is

truncated under the secular approximation (3), in

which terms that do not commute with the Zeeman

interaction are discarded, to give

HCS;secular ¼ g IzszzBz: [3]

The theoretical description of NMR spectroscopy

relies on the transformation of spatial tensors under

rotation. Two equivalent ways to treat this transfor-

mation are the direct rotation of the second-rank

spatial tensor in Cartesian form and the decomposi-

tion of the Cartesian tensor into irreducible spherical

tensor components that are independently rotated and

recombined to form the transformed Cartesian tensor.

For the direct rotation, the initial (A) and transformed

(A
0
) tensors are related by (14)

A0 ¼ RA R�1; [4]

where R is the corresponding rotation matrix. For the

transformation in irreducible spherical tensor form,

the individual spherical tensor components Akq trans-

form in an analogous fashion to the angular momen-

tum basis kets, with the qth tensor component of a

rank-k spherical tensor rotating into a sum of the

other tensor components of the same rank,

AR
k q ¼

Xk
p¼�k

DðkÞ
p q ORð Þ Ak p; [5]
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with weightings determined by the Wigner rotation

matrix elements, D
ðkÞ
pq (VR) (9–13). As will be dis-

cussed in detail below, Eq. [5] is not completely

analogous to Eq. [4]; AR
kq describes what the q

th-com-

ponent of the rank-k tensor, Akq, transforms into and

should not be confused with the qth-component of the

transformed tensor.

The precise meanings of Eqs. [4] and [5] depend

on whether the transformation is considered to be the

result of a rotation of the object (the active point of

view) or a rotation of the coordinate frame of refer-

ence (the passive point of view) (14, 15), which are

reviewed in the following sections. For a physical

rotation of the object, Eq. [4] expresses the Cartesian

tensor after the rotation, A
0
, in terms of the tensor for

the object in its original orientation, A, while Eq. [5]

describes what the initial Akq spherical-tensor com-

ponent rotates into. For a coordinate frame transfor-

mation, Eq. [4] describes the tensor in the rotated

frame, A
0
, in terms of the elements of the tensor in

the original frame, A; Eq. [5] expresses what a single
tensor component of the original frame, Akq, looks

like in the rotated frame.

To compare the Cartesian and spherical tensor

representations of a rotational transformation first

requires explicit expressions for the rotation matrices

and the corresponding Wigner rotation matrix ele-

ments. Significant confusion over this correspon-

dence exists in the literature due in part to mistakes

in two standard texts on angular momentum, the first

by Rose (10) and the second by Edmonds (12)
(although the text by Edmonds was subsequently re-

vised (16)). Bouten (15) points out these well-hidden

errors and explicitly writes out the form of the rota-

tion matrices and quantum mechanical operators that

define the Wigner rotation matrices from both the

active and passive points of view. Bouten’s expres-

sions agree with those given by Fano and Racah (9),
Wigner (11), and the revised version of Edmonds

(16). As these matrices are essential to this discus-

sion, they are presented below.

Rotation Matrices in Cartesian Space

Rotations in three-dimensional (3D) space can be

parameterized by three Euler angles, V = {a,b,g},
that relate the orientation of a stationary set of axes,

Oxyz, to a rotatable set, OXYZ. Following Bouten

(15), if the two frames are initially coincident, then

the Euler angles describe the following successive

rotations as the OXYZ axes are transformed to their

final orientation: first, a rotation about the z-axis by

an angle a (using a right-hand rule) that reorients the

X and Y axes, with the transformed Y axis defining an

intermediate axis u; second, a rotation about the u
axis by an angle b, placing the Z axis in its final ori-

entation; and third, a rotation about the transformed

Z axis by an angle g to place the OXYZ axes in their

final orientation. These are illustrated in Figure 1.

Two points of view exist for how these Euler

angles describe the orientation of an object, defined

by a body-fixed set of axes, relative to an observer-

fixed reference frame in which the object is viewed.

Under the active rotation convention, different orien-

tations of the object are the result of rotations of the

object in the observer-fixed frame. In this case, the

body-fixed axes are associated with the rotatable

OXYZ frame above, and the reference axes with the

stationary Oxyz frame. Such a transformation is

defined by the active rotation matrix in 3D space,

RA a; b; gð Þ ¼
cosa cos b cos g� sina sin g � cosa cos b sin g� sina cos g cosa sin b
sina cos b cos gþ cosa sin g � sina cos b sin gþ cosa cos g sina sinb

� sin b cos g sin b sin g cos b

0
@

1
A: [6]

As expected, an active p/2 rotation about the z axis

takes an initial vector aligned along x to one along y,

i.e., RA
p
2
; 0; 0

� � 1

0

0

0
@

1
A ¼

0

1

0

0
@

1
A.

From the standpoint of passive rotation it is the

observer-fixed frame that rotates relative to the body-

fixed frame. In this case, the body-fixed axes are

associated with the stationary Oxyz frame and the ref-

erence axes with the rotatable OXYZ frame. Different

orientations of the object are effected by different

sets of Euler angles that transform the observer-fixed

frame from initial coincidence with the body-fixed

frame to its new perspective on the object. The trans-

formation is defined by the passive rotation matrix in

3D space,

RP a; b; gð Þ ¼
cosa cos b cos g� sina sin g sina cos b cos gþ cosa sin g � sin b cos g
� cosa cos b sin g� sina cos g � sina cos b sin gþ cosa cos g sin b sin g

cosa sin b sina sinb cos b

0
@

1
A: [7]
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In the passive convention, a rotation of p/2 about Z

takes an X-vector to –Y, R
P p

2
;0;0ð Þ

1

0

0

0
@

1
A ¼

0

�1

0

0
@

1
A.

In both the active and passive contexts, the coordi-

nates of the object are written in the observer-fixed

reference frame, which is Oxyz for an active rotation

and OXYZ for passive, and so any transformation that

takes an initial vector ~a to a final vector ~b,

R
ax
ay
az

0
@

1
A ¼

bx
by
bz

0
@

1
A; [8]

must have the same numerical values for its rotation

matrix elements regardless of whether it is considered

to be the result of an active or a passive transformation;

it is only the values ascribed to the specific Euler angles

that are different. In this sense, there is considerable lat-

itude in choosing a convention when setting up trans-

formations in the laboratory frame; problems involving

coordinate frame transformations can often be recast as

physical rotations and vice versa (see Question 1 for an

example of this). It is also worth noting that if one were

to perform an active rotation followed by a passive

rotation with the same three Euler angles, the object

would be restored to its original orientation in the

observer-fixed frame, a consequence of the fact that

Figure 1 Rotation in three-dimensional space parameterized by the Euler angles, V = {a,b,g},
that relate the orientation of a rotatable set of axes, OXYZ, to a stationary set, Oxyz.
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RP a; b; gð Þ ¼ R�1
A a;b; gð Þ: [9]

Wigner Rotation Matrices

To calculate the Wigner matrix elements for the rota-

tion of the spherical tensor components requires

an expression for the quantum mechanical rotation

operator. For every rotation of a physical system in

real space, there corresponds a unitary quantum me-

chanical operator in the state space of the physical

system that transforms a ket according to

c0j i ¼ O a; b; gð Þ cj i [10]

The active and passive representations of this opera-

tor are again derived by Bouten (15) respectively as,

OA a; b; gð Þ ¼ e�ia Iz e�ib Iye�ig Iz ; [11]

and,

OP a; b; gð Þ ¼ eig Izeib Iyeia Iz: [12]

The former is familiar from NMR as the form of the

active rotations used in Liouville space transforma-

tions (5). Note that both are defined in terms of the

angular momentum operators in the observer-fixed

frame of reference, taken to be Oxyz in both cases

Table 1 Wigner Rotation Matrix Elements (17)

Active: D
ðkÞ
pq (a,b,g) = e-i a p e-i g q d

ðkÞ
pq (b) Passive: D

ðkÞ
pq (a,b,g) = ei g p ei a q d

ðkÞ
pq (-b)

d
ð0Þ
0 0 bð Þ ¼ 1 d

ð2Þ
2 2 bð Þ ¼ d

ð2Þ
�2 �2 bð Þ ¼ cos4

b
2

� �
d
ð2Þ
2 1 bð Þ ¼ �d

ð2Þ
1 2 bð Þ ¼ �d

ð2Þ
�2 �1 bð Þ ¼ d

ð2Þ
�1 �2 bð Þ

¼ �1

2
sin b 1þ cos bð Þ

d
ð1Þ
1 1 bð Þ ¼ d

ð1Þ
�1 �1 bð Þ ¼ cos2

b
2

� �
d
ð2Þ
2 0 bð Þ ¼ d

ð2Þ
0 2 bð Þ ¼ d

ð2Þ
�2 0 bð Þ ¼ d

ð2Þ
0 �2 bð Þ

¼
ffiffiffi
3

8

r
sin2 b

d
ð1Þ
1 �1 bð Þ ¼ d

ð1Þ
�1 1 bð Þ ¼ sin2

b
2

� �
d
ð2Þ
2 �1 bð Þ ¼ d

ð2Þ
1 �2 bð Þ ¼ �d

ð2Þ
�2 1 bð Þ ¼ d

ð2Þ
�1 2 bð Þ

¼ 1

2
sin b �1þ cos bð Þ

d
ð1Þ
0 1 bð Þ ¼ d

ð1Þ
�1 0 bð Þ ¼ �d

ð1Þ
0 �1 bð Þ

¼ �d
ð1Þ
1 0 bð Þ ¼ 1ffiffiffi

2
p sin b

d
ð2Þ
2 �2 bð Þ ¼ d

ð2Þ
�2 2 bð Þ ¼ sin4

b
2

� �

d
ð1Þ
0 0 bð Þ ¼ cos b d

ð2Þ
1 1 bð Þ ¼ d

ð2Þ
�1 �1 bð Þ ¼ 1

2
2 cos b� 1ð Þ cos bþ 1ð Þ

d
ð2Þ
1 �1 bð Þ ¼ d

ð2Þ
�1 1 bð Þ ¼ 1

2
2 cos bþ 1ð Þ 1� cos bð Þ

d
ð2Þ
1 0 bð Þ ¼ d

ð2Þ
0 �1 bð Þ ¼ �d

ð2Þ
0 1 bð Þ ¼ �d

ð2Þ
�1 0 bð Þ

¼ �
ffiffiffi
3

2

r
sin b cos b

d
ð2Þ
0 0 bð Þ ¼ 1

2
3 cos2 b� 1
� �
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now. As well, both are unitary and each other’s

inverse

OA a; b; gð Þ ¼ O�1
P a; b; gð Þ: [13]

The Wigner rotation matrix elements are defined

in terms of the matrix elements of these operators in

the generalized angular momentum basis |kqi,

DðkÞ
p q ORð Þ ¼ k ph jOR k qj i; [14]

which arise naturally under the application of closure

to the rotation of an initial angular momentum ket

k qj iR¼ OR k qj i ¼
X
k0

Xk0
p¼�k0

k0 pj i k0 ph jOR k qj i

¼
Xk
p¼�k

k pj i k ph jOR k qj i ¼
Xk
p¼�k

DðkÞ
p q ORð Þ k pj i: ½15�

Table 1 summarizes the Wigner rotation matrices for

both the active and passive rotation operators. Note

that it is the first index of the Wigner rotation matrix

that is summed over in Eq. [15], just as in Eq. [5].

Also, by definition, Eq. [15] describes the rotation of

the qth-basis or vector component, not the qth-basis
component of the rotated vector in state space. This

is similarly true for the rotation of the spherical ten-

sor components in Eq. [5], a point that is often con-

fused in the NMR literature (although by no means

unique to NMR) with Eq. [5] frequently taken to

mean the qth component of the transformed tensor.

To avoid confusion, the transformed tensor will be

referred to as A
0
= RA R�1 and its tensor components

as A0
kq, while a rotated tensor component will be des-

ignated as AR
kq.

It is also important to distinguish the tensor com-

ponents, which are themselves tensors, from matrix

elements of the tensors, which are scalars associated

with the magnitude of a specific tensor component.

The latter will be denoted by lower case letters, e.g.,

axx. The analogy is to vectors in Cartesian space,

with the vector ~v ¼ vxx̂þ vyŷþ vzẑ having an

x-vector component vxx̂ and an x-scalar component

(or matrix element/coefficient) vx.

THE SPHERICAL TENSOR BASIS AND THE
ROTATION OF SPHERICAL TENSORS

To derive equations for the transformation in the

spherical tensor representation, it is useful to intro-

duce the irreducible spherical tensor basis (18, 19),
which forms a matrix basis for the decomposition of

Cartesian tensors. The spherical tensor basis (STB) is

related to the 2nd-rank Cartesian tensor basis (CTB)

by

T0 0 ¼ � 1ffiffi
3

p Tx x þ Ty y þ Tz z

� �
T1 0 ¼ � iffiffi

2
p Tx y � Ty x

� �
T1 61 ¼ �1

2
Tz x � Tx z6i Tz y � Ty z

� �� �
T2 0 ¼ 1ffiffi

6
p 3Tz z � Tx x þ Ty y þ Tz z

� �� �
T2 61 ¼ �1

2
Tx z þ Tz x6i Ty z þ Tz y

� �� �
T2 62 ¼ 1

2
Tx x � Ty y6i Tx y þ Ty x

� �� � ½16�

in keeping with the standard definition of spherical

tensors used in NMR (3, 4, 6, 20, 21). Explicitly the

Cartesian basis is written

Tx x ¼
1 0 0

0 0 0

0 0 0

0
B@

1
CA Tx y ¼

0 1 0

0 0 0

0 0 0

0
B@

1
CA

Tx z ¼
0 0 1

0 0 0

0 0 0

0
B@

1
CA

Ty x ¼
0 0 0

1 0 0

0 0 0

0
B@

1
CA Ty y ¼

0 0 0

0 1 0

0 0 0

0
B@

1
CA

Ty z ¼
0 0 0

0 0 1

0 0 0

0
B@

1
CA

Tz x ¼
0 0 0

0 0 0

1 0 0

0
B@

1
CA Tz y ¼

0 0 0

0 0 0

0 1 0

0
B@

1
CA

Tz z ¼
0 0 0

0 0 0

0 0 1

0
B@

1
CA ½17�

and the spherical tensor basis is

T0 0 ¼ � 1ffiffiffi
3

p
1 0 0

0 1 0

0 0 1

0
B@

1
CA T1 0 ¼ � iffiffiffi

2
p

0 1 0

�1 0 0

0 0 0

0
B@

1
CA

T1 61 ¼ �1

2

0 0 �1

0 0 �i

1 6i 0

0
B@

1
CA
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T2 0 ¼ 1ffiffiffi
6

p
�1 0 0

0 �1 0

0 0 2

0
B@

1
CAT2 61 ¼ �1

2

0 0 1

0 0 6i

1 6i 0

0
B@

1
CA

T2 62 ¼ 1

2

1 6i 0

6i �1 0

0 0 0

0
B@

1
CA: ½18�

Both the CTB and STB are complete and satisfy the

orthonormalization conditions

Tr T
y
k lTm n

n o
¼ dk mdl n: [19]

The coefficients, akj, for the expansion of an arbitrary

Cartesian tensor, A, in the spherical basis,

A ¼
X2
k¼0

Xk
j¼�k

ak jTk j [20]

can be obtained by

ak j ¼ Tr T
y
k jA

n o
: [21]

As the STB components are not Hermitian, the ma-

trix trace is taken with the conjugate transpose of the

corresponding basis component. The coefficients

obtained by [21]

a0 0 ¼ � 1ffiffiffi
3

p ax x þ ay y þ az z
� �

a1 0 ¼ iffiffiffi
2

p ax y � ay x
� �

a1 61 ¼ �1

2
az x � ax z � i az y � ay z

� �� �
a2 0 ¼ 1ffiffiffi

6
p 3az z � ax x þ ay y þ az z

� �� �

a2 61 ¼ �1

2
ax z þ az x � i ay z þ az y

� �� �
a2 62 ¼ 1

2
ax x � ay y � i ax y þ ay x

� �� � ½22�

can readily be shown to satisfy Eq. [20] by direct

substitution.

The spherical tensor basis states transform under

rotation analogously to the angular momentum basis

kets, with the qth basis component of a rank-k spheri-
cal tensor transforming into a combination of basis

states of the same rank (9–13),

TR
k q ¼ R Tk qR

�1 ¼
Xk
j¼�k

D
ðkÞ
j q ORð ÞTk j: [23]

This equation, which will be referred to as the tensor
component equation (or component equation for short),

can be verified by direct substitution of the Wigner rota-

tion matrix elements and the Cartesian representations

of R and Tkq. It again highlights that TR
kq is the transfor-

mation of the qth-component of the rank-k tensor, not

the qth-component of the transformed tensor. Equation

[23] also clarifies the meaning of equation [5], which

should be interpreted as a scalar multiple of equation

[23]. To transform the full tensor, A is first expanded

and then rotated in the spherical tensor basis

A0 ¼ R AR�1

¼ R
X2
k¼0

Xk
j¼�k

ak jTk j

 !
R�1

¼
X2
k¼0

Xk
j¼�k

ak j
Xk
q¼�k

D
ðkÞ
q j ORð Þ Tk q

¼
X2
k¼0

Xk
q¼�k

Xk
j¼�k

D
ðkÞ
q j ORð Þ ak jTk q ½24�

or explicitly in matrix form as

a00 0 ¼ D
ð0Þ
0 0 ORð Þ a0 0

a01 �1

a01 0

a01 1

0
B@

1
CA ¼

D
ð1Þ
�1 �1 ORð Þ D

ð1Þ
�1 0 ORð Þ D

ð1Þ
�1 1 ORð Þ

D
ð1Þ
0 �1 ORð Þ D

ð1Þ
0 0 ORð Þ D

ð1Þ
0 1 ORð Þ

D
ð1Þ
1 �1 ORð Þ D

ð1Þ
1 0 ORð Þ D

ð1Þ
1 1 ORð Þ

0
BB@

1
CCA

a1 �1

a1 0

a1 1

0
@

1
A

a02 �2

a02 �1

a02 0

a02 1

a02 2

0
BBBB@

1
CCCCA ¼

D
ð2Þ
�2 �2 ORð Þ D

ð2Þ
�2 �1 ORð Þ D

ð2Þ
�2 0 ORð Þ D

ð2Þ
�2 1 ORð Þ D

ð2Þ
�2 2 ORð Þ

D
ð2Þ
�1 �2 ORð Þ D

ð2Þ
�1 �1 ORð Þ D

ð2Þ
�1 0 ORð Þ D

ð2Þ
�1 1 ORð Þ D

ð2Þ
�1 2 ORð Þ

D
ð2Þ
0 �2 ORð Þ D

ð2Þ
0 �1 ORð Þ D

ð2Þ
0 0 ORð Þ D

ð2Þ
0 1 ORð Þ D

ð2Þ
0 2 ORð Þ

D
ð2Þ
1 �2 ORð Þ D

ð2Þ
1 �1 ORð Þ D

ð2Þ
1 0 ORð Þ D

ð2Þ
1 1 ORð Þ D

ð2Þ
1 2 ORð Þ

D
ð2Þ
2 �2 ORð Þ D

ð2Þ
2 �1 ORð Þ D

ð2Þ
2 0 ORð Þ D

ð2Þ
2 1 ORð Þ D

ð2Þ
2 2 ORð Þ

0
BBBBBB@

1
CCCCCCA

a2 �2

a2 �1

a2 0

a2 1

a2 2

0
BBBB@

1
CCCCA:
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While Eqs. [24] and [25] describe the rotation of the

full tensor, the theoretical treatment of NMR interac-

tions often focuses on particular matrix elements of

the Cartesian tensor for different orientations of the

physical system (3, 4). For example, due to truncation

at high magnetic field, it is the matrix element associ-

ated with the secular component of a tensor that prin-

cipally determines its spectrum, such as szz (in the

laboratory frame) of the chemical shielding tensor.

From Eq. [24], the coefficient of the qth-component

of the rank–k, transformed tensor is

a0k q ¼
Xk
j¼�k

D
ðkÞ
q j ORð Þ ak j: [26]

We will refer to this as the coefficient equation to dis-

tinguish it from the component equation (Eq. [23]).

The coefficient equation is strikingly similar in form

to the tensor component equation, with just a switch

in the order of the indices for the Wigner coefficient.

Great care needs to be taken to distinguish these two

equations as they express different physical situa-

tions. The component equation applies to the tensor

basis components; it describes how a single tensor

component transforms into a sum of the other compo-

nents under rotation. The coefficient equation, how-

ever, gives the coefficient of a specific tensor compo-

nent after the transformation of an arbitrary tensor.

Yet in the NMR literature, equations for the trans-

formation of spherical tensor coefficients are ubiqui-

tously written as if they were the same as the tensor

component equation (3, 4, 20, 21),

b0k q
?
¼

Pk
j¼�k

D
ðkÞ
j q ORð Þ bk j [27]

with coefficients, bkj, defined to be the complex-con-

jugates of those in [22],

b0 0 ¼ a�0 0 ¼ � 1ffiffiffi
3

p ax x þ ay y þ az z
� �

b1 0 ¼ a�1 0 ¼ � iffiffiffi
2

p ax y � ay x
� �

b1 61 ¼ a�1 61 ¼ �1

2
az x � ax z6i az y � ay z

� �� �
b2 0 ¼ a�2 0 ¼

1ffiffiffi
6

p 3az z � ax x þ ay y þ az z
� �� �

b2 61 ¼ a�2 61 ¼ �1

2
ax z þ az x6i ay z þ az y

� �� �
b2 62 ¼ a�2 62 ¼

1

2
ax x � ay y6i ax y þ ay x

� �� � ½28�

These two expressions seem to confuse the rotation

of the coefficients and the rotation of the basis set

components and, in light of the coefficient equation,

should not be valid. In fact Eq. [27] is not correct in

that it is inconsistent with the Cartesian transforma-

tion under rotation as written in Eq. [4]. Rather, Eq.

[27] should be written with the inverse of the rotation

matrix in the Wigner rotation elements,

b0k q ¼
Xk
j¼�k

D
ðkÞ
j q OR�1ð Þ bk j: [29]

This can be shown by noting that the appropriate

pairing of the bkj coefficients with the basis compo-

nents to form the full tensor is

A ¼
X2
k¼0

Xk
j¼�k

b�k jTk j; [30]

and so the b�kj must satisfy the coefficient equation,

b0�k q ¼
Xk
j¼�k

D
ðkÞ
q j ORð Þ b�k j; [31]

which can be rewritten as Eq. [29] by taking the

complex-conjugate of both sides and making use of

the property that D
ðkÞ
jq (VR�1) = D

ðkÞ�
qj (VR).

The distinction between Eqs. [27] and [29] is fun-

damental and clarifies the apparent inconsistency

between the rotation of second-rank Cartesian tensors

in Cartesian and spherical tensor forms found in the

NMR literature, where the rotation using Eq. [27]

must be partnered with its inverse rotation in Carte-

sian form to produce equivalent transformations. One

prominent example of this mispairing is Appendix B

of Mehring’s text (4), which couples the Cartesian

rotation matrix from the passive perspective (the

inverse of the active perspective) with the Wigner

rotation matrix elements in the active form, an error

that can be traced back to Rose’s text (10). Others (6,
20, 21) have noted that this mispairing is necessary

and directly link the representation of the rotation in

spherical form with its inverse rotation in the Carte-

sian representation, but fail to note that the inverse

rotation should be associated with the Wigner rota-

tion matrix elements. The correct correspondence

between the physical rotation of the system and its

Cartesian and spherical tensor transformations is sig-

nificant, particularly in structural studies where con-

nections back to a molecular frame are made. As the

spatial components of the NMR Hamiltonian are

tied to the molecular frame of reference, they rotate
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with the molecule. The result is that in many cases

the transformation effected by the application of Eq.

[27] has been the opposite of what was intended or

expected. For example, Haeberlen (3) uses Eq. [27]

with the Wigner matrix elements from the passive

perspective, so is actually performing an active rota-

tion of the tensors (and molecules). Mehring (4), as
well as Spiess and Schmidt-Rohr (20), use the active

Wigner rotation matrix elements and Eq. [27], so are

actually performing a passive rotation.

EXAMPLE: THE TRANSFORMATION OF A
CHEMICAL SHIELDING TENSOR

As a worked example, the transformation of the ab ini-

tio chemical shielding tensor for the alpha carbon of

glycine in the gas phase is considered. This is done in

three ways. In method I, the ab initio chemical shield-

ing tensor is calculated directly using Gaussian03 (22)
for an initial and rotated orientation. In method II, the

transformed tensor is calculated from the initial tensor

and the rotation matrix in Cartesian form (Eq. [4]). In

method III, the transformation is effected using spheri-

cal tensors and the coefficient equation (Eq. [26]). To

be consistent, all three of these must agree.

Figure 2(a) shows the geometry optimized struc-

ture of glycine in the gas phase calculated using

Gaussian03 (B3LYP, 6311þþG**), in which the

molecular orientation in the laboratory (observer)-

fixed coordinate frame is chosen by the program dur-

ing refinement to be the standard nuclear orientation,

with the principal axes of the moment of inertia ten-

sor aligned along the three Cartesian axes. Figure

2(b) shows the same molecule in which the atomic

Cartesian coordinates from Figure 2(a) have been

rotated according to

xb

yb

zb

0
@

1
A ¼ RA

p
4
;
p
6
;
p
3

� 	 xa

ya

za

0
@

1
A

¼
�1

4

ffiffi
3
2

q
�5

4

ffiffi
1
2

q
1
2

ffiffi
1
2

q
3
4

ffiffi
3
2

q
�1

4

ffiffi
1
2

q
1
2

ffiffi
1
2

q
�1

4

ffiffi
3

p
4

ffiffi
3

p
2

0
BBB@

1
CCCA

xa

ya

za

0
@

1
A; [32]

where the superscripts a and b refer to the initial and

final molecular orientations, respectively, shown in

the corresponding figures. In this expression, the

new molecular orientation is considered to be the

result of an active rotation with Euler angles

OA ¼ a ¼ p
4
; b ¼ p

6
; g ¼ p

3


 �
. However, the orienta-

tion in 2(b) could equally be considered the result of

a passive rotation with Euler angles OP ¼ a ¼ �p
3
;



b ¼ �p

6
; g ¼ �p

4
g; either way, the numerical form of

the rotation matrix and the orientations shown in Fig-

ure 2 would be the same.

For the alpha carbon, the calculated ab initio

chemical shielding tensors (Gaussian03, B3LYP,

6311þþG**) corresponding to the molecular orien-

tations in Figure 2(a) and 2(b) are

s a ¼
151:5 �8:7 1:5
�6:9 131:0 �5:0
5:1 �2:8 119:4

0
@

1
A [33]

and

s b;I ¼
129:0 1:2 0:1
0:6 152:0 �10:9
�3:1 �7:7 120:9

0
@

1
A [34]

(in ppm). The additional superscript on the latter is

meant to signify that it was calculated using method I.

Figure 2 Two orientations of glycine in the laboratory frame related by an active rotation

RA
p
4
; p
6
; p
3

� �
of the molecular coordinates. The standard CPK scheme is used to designate

the atom colors (H, white; C, gray; N, blue; O, red).
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The chemical shielding tensor for orientation b
can also be directly calculated from the tensor for the

initial orientation and the rotation matrix using

method II, direct matrix multiplication in the Carte-

sian representation,

s b;II ¼ RA

p
4
;
p
6
;
p
3

� 	
s a R�1

A

p
4
;
p
6
;
p
3

� 	

¼
129:0 1:2 0:2

0:6 152:0 �10:9

�3:1 �7:8 120:9

0
B@

1
CA: ½35�

This agrees with method I within the expected com-

putational accuracy.

Finally, method III can be used, which employs

the use of spherical tensors. First, the initial chemical

shielding tensor is decomposed into its spherical

components by calculating the coefficients (Eq. [21])

sa
k j ¼ Tr T

y
k js

a
n o

; [36]

for k = {0,1,2} and j = {�k,. . .,k}. These transform

according to the coefficient equation (Eq. [26]) to

give the coefficients for orientation b,

sb
k q ¼

Xk
j¼�k

D
ðkÞ
q j ORA

p
4
;p
6
;p
3ð Þ

� 	
sa
k j: [37]

Here again, the Wigner rotation matrix elements will

have the same numerical values whether we consider

this an active rotation with Euler angles OA ¼ a ¼ p
4
;



b ¼ p

6
; g ¼ p

3
g or a passive rotation with Euler angles

OP ¼ a ¼ �p
3
; b ¼ �p

6
; g ¼ �p

4


 �
. Once calculated,

the full chemical shielding tensor for orientation b
can be reconstituted according to Eq. [20] as

s b;III ¼
X2
k¼0

Xk
j¼�k

sb
k jTk j

¼
129:0 1:2 0:2

0:6 152:0 �10:9

�3:1 �7:8 120:9

0
B@

1
CA; ½38�

in agreement with both methods I and II.

Note that the molecular coordinates and the tensor

transform together. This is reasonable, given that

they both correspond to quantum mechanical observ-

ables that are tied to the molecular frame of refer-

ence. Molecular frame observables also rotate in the

same sense as kets in state space, as Schmidt-Rohr

and Spiess point out (20), with a transformed molec-

ular ket

c0j i ¼ O cj i [39]

and operator tied to the molecular frame

A0 ¼ O A Oy [40]

having an expectation value that is invariant under

molecular rotation

c0h jA0 c0j i ¼ ch jA cj i: [41]

DYADIC PRODUCTS, THE NMR
HAMILTONIAN, AND REFERENCE
FRAMES

The advantage of irreducible spherical tensors is that

they isolate elements of second-rank Cartesian ten-

sors that transform together under rotation. To con-

struct the Hamiltonian directly in terms of spherical

tensor components and take full advantage of these

transformational properties, the Cartesian space, spin

operator-containing components of the NMR Hamil-

tonian are first written as a dyadic product (3, 4, 6)

Sl ¼ Sl � I ¼
Slx Ix Slx Iy Slx Iz
Sly Ix Sly Iy Sly Iz
Slz Ix Slz Iy Slz Iz

0
@

1
A: [42]

and the NMR Hamiltonian as a trace over the product

of the spatial and spin-containing Cartesian tensors

Hl ¼ cl I � Al � Sl ¼ cl Tr Al Sl

 �

: [43]

An analogous decomposition into the spherical tensor

basis can be applied to the dyadic product with coef-

ficients

s0 0 ¼ � 1ffiffiffi
3

p SxIx þ SyIy þ SzIz
� �

s1 0 ¼ iffiffiffi
2

p SxIy � SyIx
� �

s1 61 ¼ �1

2
SzIx � SxIz � i SzIy � SyIz

� �� �
s2 0 ¼ 1ffiffiffi

6
p 3SzIz � SxIx þ SyIy þ SzIz

� �� �
s2 61 ¼ �1

2
SxIz þ SzIx � i SyIz þ SzIy

� �� �
s2 62 ¼ 1

2
SxIx � SyIy � i SxIy þ SyIx

� �� �
; ½44�

allowing the Hamiltonian to be written
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Hl ¼ cl Tr Al Sl

 �

¼ cl Tr
X2
k¼0

Xk
j¼�k

ak jTk j

X2
k0¼0

Xk0
j0¼�k0

sk0 j0Tk0 j0

( )

¼ cl
X2
k¼0

Xk
j¼�k

�1ð Þjak jsk �j: ½45�

Here, the identity

Tk0 j0 ¼ �1ð Þj0Tyk0 �j0 [46]

has been used to simplify the trace. Note that the

coefficients in the Cartesian dyadic product contain

spin operators, which themselves may be treated

using spherical tensors in spin space (2, 23–25), a
related but distinct issue from the representation of

Cartesian tensors in real space treated here.

The transformation of the Hamiltonian under rota-

tion in real space can now be written directly in

terms of the rotation of the Cartesian tensor in Eq.

[43] or through the transformation of the spherical

tensor coefficients, akj, in Eq. [45]. For example, if

the spatial tensor has known components in its prin-

cipal axis system (the coordinate system in which the

symmetric part of the spatial tensor is diagonal), then

the tensor components in the laboratory frame can be

calculated and combined with the spin-containing

components to give the Hamiltonian as

Hl ¼ cl Tr Alab Slab

 �

¼ cl Tr R Olab
PAS

� �
APAS R�1 Olab

PAS

� �
Slab


 �
[47]

and

Hl ¼ cl
X2
k¼0

Xk
j¼�k

�1ð Þjalabk j slabk �j ¼ cl
X2
k¼0

Xk
j¼�k

�1ð Þj

�
Xk
j0¼�k

D
ðkÞ
j j0 Olab

PAS

� �
aPASk j0 s

lab
k �j; ½48�

respectively, in Cartesian and spherical tensor forms.

Here Vlab
PAS is the set of Euler angles that parameter-

ize the orientation of the principal axis system (PAS)

as seen by an observer in the laboratory frame. The

superscripts ‘‘lab’’ and ‘‘PAS’’ have been added to

the tensors to indicate that the components are

defined relative to an observer in those frames (and

the l dropped from the tensors for notational conven-

ience). Both Eqs. [47] and [48] can be simplified

considerably under the secular approximation (see

Question 2).

The Hamiltonian in Eqs. [47] and [48] is written

from the perspective of the laboratory frame, with the

spatial tensor transformed to that frame before being

combined with the spin components (also in the labora-

tory frame) to form the Hamiltonian. While the external

magnetic field and spin operators associated with NMR

observables are tied to the laboratory frame, making

this an obvious choice for writing the tensor compo-

nents of the Hamiltonian, the trace in Eq. [43] is invari-

ant to a change in basis, so the spatial and spin tensors

in the Hamiltonian may in fact be written in any arbi-

trary frame. For example, in some cases it may be con-

venient to consider the tensor components of the Ham-

iltonian from within the spatial tensor PAS frame,

Hl ¼ cl Tr APAS SPAS

 �

: [49]

The spin tensor in the PAS must ultimately be related

back to the spin tensor in the laboratory frame, as the

latter contains the lab-frame angular momentum

operators that direct the spin dynamics, but again the

tensors are simply related by

SPAS ¼ R OPAS
lab

� �
Slab R�1 OPAS

lab

� �
; [50]

where now the Euler angles parameterize the orienta-

tion of the laboratory frame as seen by an observer in

the PAS frame.

This leads to a potential source of confusion, as

the Euler angles are defined relative to observers in

different frames in Eqs. [47] and [49]. They are

related, however, and by comparing Eqs. [47]–[50],

and making use of the cyclic property of the trace,

Hl ¼ cl Tr R Olab
PAS

� �
APAS R�1 Olab

PAS

� �
Slab


 �
¼ cl Tr APAS R�1 Olab

PAS

� �
Slab R Olab

PAS

� �
 �
¼ cl Tr APAS R OPAS

lab

� �
Slab R�1 OPAS

lab

� �
 �
¼ cl Tr R�1 OPAS

lab

� �
APAS R OPAS

lab

� �
Slab


 �
; ½51�

it is seen that

R Olab
PAS

� � ¼ R�1 OPAS
lab Þ�

[52]

or

R alab
PAS; b

lab
PAS; l

lab
PAS

� � ¼ R�1 aPAS
lab ; bPASlab ; gPASlab

� �
¼ R �gPASlab ;�bPASlab ;�aPAS

lab

� �
: ½53�

In other words, two observers in the lab and PAS

frames have opposite views of the rotation that takes

their frames from initial coincidence to their final ori-

entation relative to each other, exactly as one would

expect. Equation [51] also highlights that even for
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tensors written in the lab frame, the transformation of

the spatial components of the Hamiltonian to that

frame can be replaced by the application of the

inverse transformation to the spin containing dyadic

terms.

Finally, it is noted that in some cases a frame dis-

tinct from the lab or PAS may be more convenient to

work in. For example, in their classic paper on side-

band intensities under magic-angle spinning, Herz-

feld and Berger (26) choose the MAS rotor as the

frame of reference and then write both the lab frame

magnetic field/spin operators (which are now time-

dependent) and the chemical shift tensor in the rotor

frame. Question 3 below presents an alternate deriva-

tion of the Hamiltonian used as the starting point in

the Herzfeld-Berger analysis, writing the components

in the laboratory frame and using a two-step transfor-

mation of the spatial tensor from the PAS to rotor

and then rotor to lab frames.

CONCLUSIONS

The motivation behind the use of irreducible spheri-

cal tensors in NMR is that they allow the components

of second-rank Cartesian tensors to be grouped

according to their underlying rotational symmetry. In

principal, this should simplify the treatment of aniso-

tropic interactions in the NMR Hamiltonian. In prac-

tice, the inconsistent use of active and passive con-

ventions and errors in several of the classic texts on

angular momentum have kept these benefits from

being fully realized and have led in many cases to

transformations that correspond to the inverse of the

stated rotation. In situations where spectroscopic

observables are averaged over the full set of Euler

angles or no connection is made back to a molecular

frame of reference, this confusion in rotation is of lit-

tle consequence. The calculated CSA powder line

shape, for example, would be the same regardless of

whether the molecular rotation was parameterized

correctly or with an inverted sense. In cases where

absolute connections between the spatial tensor and

molecular or crystalline frames are desired, however,

these discrepancies must be reconciled.

Here a consistent approach to the transformation

of second-rank Cartesian tensors in Cartesian and

spherical tensor forms has been shown. The introduc-

tion of an explicit spherical tensor basis for the

decomposition of second-rank Cartesian tensors helps

delineate the rotational properties of the basis states

from those of the matrix elements. This provides a

uniform approach to the rotation of the physical

system and the corresponding transformation of the

spatial components of the NMR Hamiltonian repre-

sented by either Cartesian or spherical tensors.

Questions and Answers

Question 1. There is considerable latitude in choosing
either the active or passive convention for represent-
ing a transformation in NMR. For example, consider
the transformation of a chemical shielding tensor
under a change in coordinate frame of reference from
the tensor PAS to the laboratory frame. Describe this
transformation using the passive point of view and
then recast the problem using the active point of view.

Answer:

The use of the passive point of view in this con-

text is straight-forward. Letting the Euler angles
PVlab

PAS parameterize the rotation that would take the

PAS frame into coincidence with the laboratory

frame, the chemical shielding tensor in the lab frame

would be written:

s lab ¼ RP
POlab

PAS

� �
s PAS R�1

P
POlab

PAS

� �
:

Alternatively, the coordinate frame transformation

could be considered to result from an active rotation

that takes the tensor PAS from initial alignment with

the laboratory frame to its final orientation in the labo-

ratory frame, parameterized by the Euler angles AVlab
PAS,

s lab ¼ RA
AOlab

PAS

� �
s PAS R�1

A
AOlab

PAS

� �
:

In this case, sPAS is both the initial tensor in the labo-

ratory frame and the tensor in the PAS frame. PVlab
PAS

and AVlab
PAS are of course related; if PVlab

PAS = {a,b,g}
then AVlab

PAS =�{g,b,a}.
Question 2. Write out the chemical shielding Hamilto-

nian under the secular approximation in terms of the

PAS components, sXX, sYY, and sZZ, and the Euler

angles, Vlab
PAS, that relate the PAS and laboratory

frames. Use the active rotation convention.

Answer:

(a) Using Cartesian Tensors:

The starting point for this problem is Eq. [47].

First, the following associations are made for the

chemical shielding interaction:

cl ¼ g;

APAS ¼ s PAS ¼
sXX 0 0

0 sYY 0

0 0 sZZ

0
@

1
A

ðignoring the antisymmetric termsÞ;
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and

Slab ¼ B� Ið Þlab¼
0 0 0

0 0 0

BzIx BzIy BzIz

0
@

1
A;

for the static magnetic field aligned along the lab-

frame z-axis. Under the secular approximation, Slab

can be further simplified by dropping the Ix and Iy spin
angular momentum terms, which do not commute

with the Zeeman interaction, HZeeman = gBzIz, allow-
ing the chemical shielding Hamiltonian to be written

HCS ¼ g R Olab
PAS

� �
s PAS R�1 Olab

PAS

� �
 �
zz
BzIz:

Using the active convention for writing the rotation

matrix,

HCS ¼ g BzIz

�
sZZ cos

2 bþ sXX sin
2 b cos2 g

þsYY sin
2 b sin2 g

	
;

where Vlab
PAS = {a,b,g} are the Euler angles that

would take the PAS frame from initial coincidence

with the lab frame to its final orientation in the lab

frame.

The Hamiltonian can be also be written in terms

of the isotropic shift,

s ¼ 1

3
sXX þ sYY þ sZZð Þ;

anisotropy,

d ¼ sZZ � s;

and asymmetry,

Z ¼ sYY � sXX

d
;

as,

HCS ¼ g BzIz sþ d
3 cos2 b� 1

2
� 1

2
Z sin2 b cos 2gÞ

� �
:




(b) Using Spherical Tensors:

The starting point here is Eq. [48], with the same

associations given above and noting that

aPAS0 0 ¼ � 1ffiffiffi
3

p sXX þ sYY þ sZZ½ � ¼ �
ffiffiffi
3

p
s

aPAS1 0 ¼ 0

aPAS1 61 ¼ 0

aPAS2 0 ¼ 1ffiffiffi
6

p 3sZZ � sXX þ sYY þ sZZð Þ½ � ¼
ffiffiffi
3

2

r
d

aPAS2 61 ¼ 0

aPAS2 62 ¼
1

2
sXX � sYY½ � ¼ �1

2
Z d

and

slab0 0 ¼ � 1ffiffiffi
3

p BzIz

slab1 0 ¼ 0

slab1 61 ¼ �1

2
BzIx � iBzIy
� � �secular

0

slab2 0 ¼
ffiffiffi
2

3

r
BzIz

slab2 61 ¼ �1

2
BzIx � iBzIy
� � �secular

0

slab2 62 ¼ 0

Equation [48] can then be written

HCS ¼ g alab0 0s
lab
0 0 þ g alab2 0s

lab
2 0

¼g D
ð0Þ
0 0 Olab

PAS

� �
aPAS0 0 slab0 0 þ g

X2
j0¼�2

D
ð2Þ
0 j0 O

lab
PAS

� �
aPAS2 j0 s

lab
2 0

¼ g BzIzsþ g BzIz

n
�D

ð2Þ
0 �2 Olab

PAS

� � ffiffiffi
1

6

r
Zd

þD
ð2Þ
0 0 Olab

PAS

� �
d� D

ð2Þ
0 2 Olab

PAS

� � ffiffiffi
1

6

r
Zdg

¼ g BzIz sþ d
3 cos2 b� 1

2
� 1

2
Z sin2 b cos 2gÞ

� �
:




Question 3. In their classic paper on sideband inten-

sities under magic-angle spinning, Herzfeld and

Berger (26) write both the lab frame magnetic field/

spin operators and the chemical shift tensor in the

MAS rotor frame,

Hcs ¼ �g Tr s rotor B� Ið Þrotor
 �
¼ �g Tr

n
R Orotor

PAS

� �
s PAS R�1 Orotor

PAS

� �
R Orotor

lab

� �
� B� Ið Þlab R�1 Orotor

lab

� �o
Provide an alternate derivation of the Hamiltonian

used as the starting point in the Herzfeld-Berger anal-

ysis (corresponding to the frequency given in Eq.

[16] of their paper) by writing the components in the

laboratory frame and using a two-step transformation

of the spatial tensor from the PAS to rotor frame and

then from the rotor to lab frames. Use spherical ten-

sors and the passive rotation convention.
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Answer: Under the secular approximation, the

chemical shift Hamiltonian in spherical tensor form is

Hcs ¼ �g alab0 0s
lab
0 0 � g alab2 0s

lab
2 0

¼ �g D
ð0Þ
0 0 Olab

rotor

� �
arotor0 0 slab0 0

� g
X2
j0¼�2

D
ð2Þ
0 j0 Olab

rotor

� �
arotor2 j0 s

lab
2 0

¼ �g D
ð0Þ
0 0 Olab

rotor

� �
D

ð0Þ
0 0 Orotor

PAS

� �
aPAS0 0 slab0 0

� g
X2
j0¼�2

X2
j00¼�2

D
ð2Þ
0 j0 O

lab
rotor

� �
D

ð2Þ
j0 j00 O

rotor
PAS

� �
aPAS2 j00 s

lab
2 0

¼ �g BzIzs� g
X2
j0¼�2

X2
j00¼�2

D
ð2Þ
0 j0 O

lab
rotor

� �
� D

ð2Þ
j0 j00 O

rotor
PAS

� �
aPAS2 j00 s

lab
2 0

¼ �g BzIzs� g BzIz
X2
j0¼�2

D
ð2Þ
0 j0 O

lab
rotor

� �
�
�D

ð2Þ
j0 �2 Orotor

PAS

� � ffiffiffi
1

6

r
Zdþ D

ð2Þ
j0 0 Orotor

PAS

� �

�d� D
ð2Þ
j0 2 Orotor

PAS

� � ffiffiffi
1

6

r
Zd
�

Using the passive convention, the Euler angles that

would take the rotor-fixed frame to the laboratory

frame under MAS are

Olab
rotor ¼ ort; ym; 0f g;

where

ym ¼ cos�1 1ffiffiffi
3

p
� �

:

(N.B., this is just one of the possible ways in which

MAS can be parameterized). Substituting above and

simplifying the expression gives

Hcs ¼ �g BzIz

�
s:

þ d
1

2
sin2 b� 1

4
Z cos 2a 1þ 1

3
cos 2b

� �
 �
� cos 2ortþ 2gð Þ

þ 1

3
Zd sin 2a cos b sin 2ortþ 2gð Þ

� 1ffiffiffi
2

p d 1þ 1

3
Z cos 2a

� �
sin 2b cos ortþ gð Þ

þ
ffiffiffi
2

p

3
Zd sin 2a sin b sin ortþ gð Þ

�

where the Euler angles Vrotor
PAS = {a,b,g} parameterize

the rotation that would take the PAS to the rotor

frame. With some minor algebraic and trigonometric

rearrangement, this can be reduced to Eq. [16] of

their article.
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