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ABSTRACT: The transformation of second-rank Cartesian tensors under rotation plays
a fundamental role in the theoretical description of nuclear magnetic resonance experi-
ments, providing the framework for describing anisotropic phenomena such as single
crystal rotation patterns, tensor powder patterns, sideband intensities under magic-angle
sample spinning, and as input for relaxation theory. Here, two equivalent procedures for
effecting this transformation—direct rotation in Cartesian space and the decomposition
of the Cartesian tensor into irreducible spherical tensors that rotate in subgroups of rank
0, 1, and 2—are reviewed. In a departure from the standard formulation, the explicit use
of the spherical tensor basis for the decomposition of a spatial Cartesian tensor is intro-
duced, helping to delineate the rotational properties of the basis states from those of
the matrix elements. The result is a uniform approach to the rotation of a physical system
and the corresponding transformation of the spatial components of the NMR Hamilto-
nian, expressed as either Cartesian or spherical tensors. This clears up an apparent
inconsistency in the NMR literature, where the rotation of a spatial tensor in spherical
tensor form has typically been partnered with the inverse rotation in Cartesian form to

produce equivalent transformations.
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INTRODUCTION

The NMR Hamiltonian is anisotropic, giving rise to
spectroscopic lines that depend not only on local mo-
lecular and chemical structure, but also on orientation
within the static magnetic field (/-7). For example,
single crystals have resonance frequencies that are
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periodic under rotation, while powdered samples of
randomly oriented crystallites give broad, but typi-
cally structured, resonances. Time-dependent modu-
lation of the orientation through sample spinning can
average the position and breadth of these peaks, but
even for samples in rapid isotropic motion, vestiges
of anisotropic interactions remain as routes to relaxa-
tion (/, 2, 5, 8).

Anisotropic interactions in the NMR Hamiltonian
are represented by second-rank Cartesian tensors
whose transformational properties under rotation play
a fundamental role in the theoretical description of
NMR experiments (/-7). Two approaches to treating
these rotations are the direct transformation of the
second-rank spatial tensor in Cartesian form and the
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decomposition of the Cartesian tensor into irreduci-
ble spherical tensor components that rotate in sub-
groups of rank 0, 1, and 2 (9-13). While these two
approaches must give equivalent results, there is an
apparent and curious need in the NMR literature to
partner the rotation in one representation with its
inverse rotation in the other to find consistency in the
final transformed tensor. Here, the transformation of
second-rank tensors in Cartesian and spherical forms
are reviewed and it is shown that discrepancies in
their sense of rotation can be reconciled by explicitly
writing the Cartesian tensor as an expansion in the ir-
reducible spherical tensor basis and taking care to
distinguish the rotational properties of the underlying
spherical tensor basis components from those of the
expansion coefficients. The result is a uniform and
consistent approach to the rotation of the physical
system and the corresponding transformation of the
spatial components of the NMR Hamiltonian,
expressed as either Cartesian or spherical tensors.

This review begins with a brief introduction to
second-rank Cartesian tensors in the NMR Hamilto-
nian and rotation matrices and operators from both
the active and passive points of view. Next, the
spherical tensor basis is introduced and explicit rela-
tions for the transformation of spherical tensor matrix
elements under rotation of the physical system are
derived. The resulting coefficient equation differs
from the customary equation used in the theoretical
description of NMR experiments, and the relation-
ship between the two is shown, highlighting the error
in the sense of rotation for the latter. A worked
example for the transformation of an ab initio chemi-
cal shielding tensor is then presented to illustrate the
consistency of this approach, before final comments
on the Hamiltonian in spherical tensor form and the
choice of reference frame.

THE NMR HAMILTONIAN AND
ROTATIONS

The general form of a term in the NMR Hamiltonian
3,4,6,7)1s

H=cM1-AM-$N, [1]

where ¢ is a constant specific to a given interaction,
I is a spin angular momentum vector operator, and $™
is another vector, which, depending on the particular
interaction, may be the same spin angular momentum
operator (quadrupolar interaction), a different spin
angular momentum operator (J coupling or dipolar

coupling), the static magnetic field (chemical shield-
ing interaction), or the molecular angular momentum
vector (spin-rotation interaction). A* is a second-rank
Cartesian tensor and is a molecular level property
that depends on local geometry, electronic structure,
and molecular orientation. For example, the Hamilto-
nian for the chemical shielding interaction has the
form,

H® =vyI.o -B

Gx Oz O B

=7v (lkowB: +1,6,.B. + .6..B), [2]

N
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for the static, laboratory-frame magnetic field aligned
along the z-axis. The chemical shielding interaction
results from currents in the electron density induced
by the external magnetic field, which in turn produce
an additional magnetic field that interacts with the
nuclear spin. Although the induced field is not neces-
sarily aligned along the lab-frame magnetic field, it is
truncated under the secular approximation (3), in
which terms that do not commute with the Zeeman
interaction are discarded, to give

HCSA,secular — ,Y IZGZZBZ' [3]

The theoretical description of NMR spectroscopy
relies on the transformation of spatial tensors under
rotation. Two equivalent ways to treat this transfor-
mation are the direct rotation of the second-rank
spatial tensor in Cartesian form and the decomposi-
tion of the Cartesian tensor into irreducible spherical
tensor components that are independently rotated and
recombined to form the transformed Cartesian tensor.
For the direct rotation, the initial (A) and transformed
(A/) tensors are related by (/4)

A'=RAR [4]

where R is the corresponding rotation matrix. For the
transformation in irreducible spherical tensor form,
the individual spherical tensor components Ay, trans-
form in an analogous fashion to the angular momen-
tum basis kets, with the qth tensor component of a
rank-k spherical tensor rotating into a sum of the
other tensor components of the same rank,

k
AR, = DY) (Qr) Ar), [5]
p=—k
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with weightings determined by the Wigner rotation
matrix elements, Dg;)(QR) (9-13). As will be dis-
cussed in detail below, Eq. [5] is not completely
analogous to Eq. [4]; qu describes what the ¢"™-com-
ponent of the rank-k tensor, Ay, transforms into and
should not be confused with the ¢™-component of the
transformed tensor.

The precise meanings of Eqgs. [4] and [5] depend
on whether the transformation is considered to be the
result of a rotation of the object (the active point of
view) or a rotation of the coordinate frame of refer-
ence (the passive point of view) (/4, 15), which are
reviewed in the following sections. For a physical
rotation of the object, Eq. [4] expresses the Cartesian
tensor after the rotation, AI, in terms of the tensor for
the object in its original orientation, A, while Eq. [5]
describes what the initial Ay, spherical-tensor com-
ponent rotates into. For a coordinate frame transfor-
mation, Eq. [4] describes the tensor in the rotated
frame, AI, in terms of the elements of the tensor in
the original frame, A; Eq. [5] expresses what a single
tensor component of the original frame, Ay,, looks
like in the rotated frame.

To compare the Cartesian and spherical tensor
representations of a rotational transformation first
requires explicit expressions for the rotation matrices
and the corresponding Wigner rotation matrix ele-
ments. Significant confusion over this correspon-
dence exists in the literature due in part to mistakes
in two standard texts on angular momentum, the first
by Rose (/0) and the second by Edmonds (/2)
(although the text by Edmonds was subsequently re-
vised (16)). Bouten (/5) points out these well-hidden
errors and explicitly writes out the form of the rota-
tion matrices and quantum mechanical operators that

cosacos Bcosy — sinasiny
Ra(a, B,y) = | sinacosPcosy+ cosasiny

—sinfBcosy

As expected, an active 1/2 rotation about the z axis
takes an initial vector aligned along x to one along y,

1 0
ie. Ra(2,0,0){ 0 | =1
0 0

From the standpoint of passive rotation it is the
observer-fixed frame that rotates relative to the body-
fixed frame. In this case, the body-fixed axes are

cosacosfcosy — sinasiny
Rp(o, B,7) = | —cosacosPsiny — sinacosy

cos o sin B
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define the Wigner rotation matrices from both the
active and passive points of view. Bouten’s expres-
sions agree with those given by Fano and Racah (9),
Wigner (/7), and the revised version of Edmonds
(16). As these matrices are essential to this discus-
sion, they are presented below.

Rotation Matrices in Cartesian Space

Rotations in three-dimensional (3D) space can be
parameterized by three Euler angles, Q) = {a,B,v},
that relate the orientation of a stationary set of axes,
Oxyz, to a rotatable set, OXYZ. Following Bouten
(15), if the two frames are initially coincident, then
the Euler angles describe the following successive
rotations as the OXYZ axes are transformed to their
final orientation: first, a rotation about the z-axis by
an angle « (using a right-hand rule) that reorients the
X and Y axes, with the transformed Y axis defining an
intermediate axis u; second, a rotation about the u
axis by an angle B, placing the Z axis in its final ori-
entation; and third, a rotation about the transformed
Z axis by an angle v to place the OXYZ axes in their
final orientation. These are illustrated in Figure 1.
Two points of view exist for how these Euler
angles describe the orientation of an object, defined
by a body-fixed set of axes, relative to an observer-
fixed reference frame in which the object is viewed.
Under the active rotation convention, different orien-
tations of the object are the result of rotations of the
object in the observer-fixed frame. In this case, the
body-fixed axes are associated with the rotatable
OXYZ frame above, and the reference axes with the
stationary Oxyz frame. Such a transformation is
defined by the active rotation matrix in 3D space,

—cosacosBsiny —sinacosy cosasinf
—sinacosPsiny + cosacosy sinasinf |. [6]

sin 3 sin y cos B3

associated with the stationary Oxyz frame and the ref-
erence axes with the rotatable OXYZ frame. Different
orientations of the object are effected by different
sets of Euler angles that transform the observer-fixed
frame from initial coincidence with the body-fixed
frame to its new perspective on the object. The trans-
formation is defined by the passive rotation matrix in
3D space,

sinacosffcosy +cosasiny —sinfcosy
—sinacosPsiny +cosacosy sinfsiny |. [7]
sin « sin B cos
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Figure 1 Rotation in three-dimensional space parameterized by the Euler angles, ) = {a,B,7},
that relate the orientation of a rotatable set of axes, OXYZ, to a stationary set, Oxyz.

In the passive convention, a rotation of m/2 about Z
1 0

takes an X-vector to —Y, RP(g,o,o) 0l =1 -1
0

In both the active and passive contexts, the coordi-

nates of the object are written in the observer-fixed

reference frame, which is Oxyz for an active rotation

and OXYZ for passive, and so any transformation that

takes an initial vector & to a final vector 5,

a, b,
R{a | =10 | [8]
a, b,

must have the same numerical values for its rotation
matrix elements regardless of whether it is considered
to be the result of an active or a passive transformation;
it is only the values ascribed to the specific Euler angles
that are different. In this sense, there is considerable lat-
itude in choosing a convention when setting up trans-
formations in the laboratory frame; problems involving
coordinate frame transformations can often be recast as
physical rotations and vice versa (see Question 1 for an
example of this). It is also worth noting that if one were
to perform an active rotation followed by a passive
rotation with the same three Euler angles, the object
would be restored to its original orientation in the
observer-fixed frame, a consequence of the fact that
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Table 1 Wigner Rotation Matrix Elements (17)
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Active: Dl(jl(l) (OL,B,Y) — e-i ap e-i Y q d[()’;{) (B)

Passive: D;,Z) (aPy)=e "Pe >4 d,g? -B)

d ) =1

= —%sm (1 +cosP)
dSy(B) = di3(B) = d% o(B) = di) 1 (B)
= 4/ Zsin?

d? (B) = d,(B) = —d) ,(B) = d" ,(B)
= %sinB (—1+cosP)

d\(B) = d% ,(B) = 3(2cos B+ 1) (1 — cos )

—d(B) = —dS ) (B) = —d" o (B)

= \/gsinﬁcosﬁ

dE(B) = S(3cos” B 1)

N
o2
—
=
=

|

Rp(a, B,7) =Ry (a,B,7). [9]

Wigner Rotation Matrices

To calculate the Wigner matrix elements for the rota-
tion of the spherical tensor components requires
an expression for the quantum mechanical rotation
operator. For every rotation of a physical system in
real space, there corresponds a unitary quantum me-
chanical operator in the state space of the physical
system that transforms a ket according to

') = 0(a, B,7) V) [10]

The active and passive representations of this opera-
tor are again derived by Bouten (/5) respectively as,

Oa(e, B y) = e FePhe™ 11
and,
Op(a, B, y) = € P her [12]

The former is familiar from NMR as the form of the
active rotations used in Liouville space transforma-
tions (5). Note that both are defined in terms of the
angular momentum operators in the observer-fixed
frame of reference, taken to be Oxyz in both cases
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now. As well, both are unitary and each other’s
inverse

O, B,7) = Op' (o, B, ). [13]

The Wigner rotation matrix elements are defined
in terms of the matrix elements of these operators in
the generalized angular momentum basis lkg),

DY) (Qr) = (k p|Ok|k q), [14]

which arise naturally under the application of closure
to the rotation of an initial angular momentum ket

y
|k q)"= Orlk q) = > > [K p){(K p|Oxlk q)

kK p=—k

k
= > |k p)(k plOlk q) = ZDk (Qr) [k p). [15]
p=—k p=—k

Table 1 summarizes the Wigner rotation matrices for
both the active and passive rotation operators. Note
that it is the first index of the Wigner rotation matrix
that is summed over in Eq. [15], just as in Eq. [5].
Also, by definition, Eq. [15] describes the rotation of
the ¢™-basis or vector component, not the ¢"-basis
component of the rotated vector in state space. This
is similarly true for the rotation of the spherical ten-
sor components in Eq. [5], a point that is often con-
fused in the NMR literature (although by no means
unique to NMR) with Eq. [5] frequently taken to
mean the ¢™ component of the transformed tensor.
To avoid confusion, the transformed tensor will be
referred to as A" = RA R and its tensor components
as Ak , while a rotated tensor component will be des-
1gnated as A

It is also 1mportant to distinguish the tensor com-
ponents, which are themselves tensors, from matrix
elements of the tensors, which are scalars associated
with the magnitude of a specific tensor component.
The latter will be denoted by lower case letters, e.g.,
axx. The analogy is to vectors in Cartesian space,
with the vector V=vX+vy+v.Z having an
x-vector component v,X and an x-scalar component
(or matrix element/coefficient) v,.

THE SPHERICAL TENSOR BASIS AND THE
ROTATION OF SPHERICAL TENSORS

To derive equations for the transformation in the
spherical tensor representation, it is useful to intro-

duce the irreducible spherical tensor basis (I8, 19),
which forms a matrix basis for the decomposition of
Cartesian tensors. The spherical tensor basis (STB) is
related to the 2"-rank Cartesian tensor basis (CTB)
by

Tl() = _\/LE[TXy T) x]
T+ = _%[TZA - T)Nii(TZy - T) ")]
Ty = ﬁ[ﬂz— - (Tvx+T>’>’ +T'h)}

T2 +1 — :F%[sz + Tz,vii(T)‘Z + TZ}’):I
Tyer = %[T«\‘x*T}’}'ii(TX}'+TyX)] [16]

in keeping with the standard definition of spherical
tensors used in NMR (3, 4, 6, 20, 21). Explicitly the
Cartesian basis is written

1 00 01 0
T.,=10 0 0 Ty, =10 0 0
0 0 0 0 0 0
0 0 1
T“<O 0 0
0 0 0
0 0 0 0 0 0
T,,=11 0 O) T,y =10 0
0 0 0 0 0 0
0 0 0
TyZ(O 0 1
0 0 0
0 0 0 0 0
T,..=(10 0 0) T., = 0 0
1 00 0 1 0
0 0 0
T..=10 0 0 [17]
0 0 1
and the spherical tensor basis is
. 1 00 ; 0 1 0
Toop=——=]0 1 0| Tyo=—=] -1 O
V3 0 0 1 V2 0 0
0o 0 -1
T1+1_—% 0O 0 =
1 i 0
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| -1 0 0 0 0 1
1
TZO:— 0 -1 0 To,x1=F=[ 0 O *i
2
V6 0 0o 2 I = 0
| 1 =i 0
Toey=g| =i —1 0 18]
0 0 O

Both the CTB and STB are complete and satisfy the
orthonormalization conditions

T T b = B [19]

The coefficients, ay;, for the expansion of an arbitrary
Cartesian tensor, A, in the spherical basis,

2 k
A=) a Ty [20]
k=0 j=—k
can be obtained by
ar; :Tr{TIjA}. [21]

As the STB components are not Hermitian, the ma-
trix trace is taken with the conjugate transpose of the
corresponding basis component. The coefficients
obtained by [21]

1
apo = _7-[5’}'3' +(lyy +azz]

I
ayo = ﬁ[axy - ayx}
1
ay +1 = E[aw axz¥i(azy_ayl)}
1
aro = %[?sz - (axx +ayy +a“”
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[axz +azx + i(Clyz +aZY)}

ay +2 = [axx —Qyy + i<ax y + ay \)} [22]

N —

can readily be shown to satisfy Eq. [20] by direct
substitution.

The spherical tensor basis states transform under
rotation analogously to the angular momentum basis
kets, with the ¢ basis component of a rank-k spheri-
cal tensor transforming into a combination of basis
states of the same rank (9-13),

T{, =R TR ZD(" Qu)Tij. [23]
j=—k

This equation, which will be referred to as the fensor
component equation (or component equation for short),
can be verified by direct substitution of the Wigner rota-
tion matrix elements and the Cartesian representations
of R and T,. It again highlights that qu is the transfor-
mation of the qth-component of the rank-k tensor, not
the ¢™-component of the transformed tensor. Equation
[23] also clarifies the meaning of equation [5], which
should be interpreted as a scalar multiple of equation
[23]. To transform the full tensor, A is first expanded
and then rotated in the spherical tensor basis

A’ =R AR™!

:ZZZD () & jTi,  [24]

D(—ll)l(QR ar-

(1) apo

D()I(QR) ay

D\ (Qx)

2 2 2

Q) D50 @) D51 (@) D5 14,
Qr) D%omm D%AQR) Dii)zmm
) D(()Z(;)(QR) D%%(QR) D%(QR) a0
D ey alan oian [\a:
R) Dzo(QR) DZI(QR) Dzz(QR) 22
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While Egs. [24] and [25] describe the rotation of the
full tensor, the theoretical treatment of NMR interac-
tions often focuses on particular matrix elements of
the Cartesian tensor for different orientations of the
physical system (3, 4). For example, due to truncation
at high magnetic field, it is the matrix element associ-
ated with the secular component of a tensor that prin-
cipally determines its spectrum, such as G,, (in the
laboratory frame) of the chemical shielding tensor.
From Eq. [24], the coefficient of the ¢™-component
of the rank—«, transformed tensor is

k
=" DY) (r) a;. [26]

=k

We will refer to this as the coefficient equation to dis-
tinguish it from the component equation (Eq. [23]).
The coefficient equation is strikingly similar in form
to the tensor component equation, with just a switch
in the order of the indices for the Wigner coefficient.
Great care needs to be taken to distinguish these two
equations as they express different physical situa-
tions. The component equation applies to the tensor
basis components; it describes how a single tensor
component transforms into a sum of the other compo-
nents under rotation. The coefficient equation, how-
ever, gives the coefficient of a specific tensor compo-
nent after the transformation of an arbitrary tensor.

Yet in the NMR literature, equations for the trans-
formation of spherical tensor coefficients are ubiqui-
tously written as if they were the same as the tensor
component equation (3, 4, 20, 21),

?
b, - zD")mR) [27]

with coefficients, by;, defined to be the complex-con-
jugates of those in [22],

1
boo = ayo = —ﬁ[a” +ayy +a::]

i

bro=aj, _ﬁ[a«w—‘lw]
1
b+ = aTil = _E[azx _axzii(azy _ayz)]

These two expressions seem to confuse the rotation
of the coefficients and the rotation of the basis set
components and, in light of the coefficient equation,
should not be valid. In fact Eq. [27] is not correct in
that it is inconsistent with the Cartesian transforma-
tion under rotation as written in Eq. [4]. Rather, Eq.
[27] should be written with the inverse of the rotation
matrix in the Wigner rotation elements,

b, = ZkD Q1) by ;. [29]
o

This can be shown by noting that the appropriate
pairing of the by; coefficients with the basis compo-
nents to form the full tensor is

2 k
A= Z Z by Tk, [30]

k=0 j=—k

and so the b;; must satisfy the coefficient equation,

k
* k %
b, = D) by, [31]

=k

which can be rewritten as Eq. [29] by taking the
complex- conjugate of both 51des and making use of
the property that D (QR 1) = D (QR)

The distinction between Eqs [27] and [29] is fun-
damental and clarifies the apparent inconsistency
between the rotation of second-rank Cartesian tensors
in Cartesian and spherical tensor forms found in the
NMR literature, where the rotation using Eq. [27]
must be partnered with its inverse rotation in Carte-
sian form to produce equivalent transformations. One
prominent example of this mispairing is Appendix B
of Mehring’s text (4), which couples the Cartesian
rotation matrix from the passive perspective (the
inverse of the active perspective) with the Wigner
rotation matrix elements in the active form, an error
that can be traced back to Rose’s text (/0). Others (6,
20, 21) have noted that this mispairing is necessary
and directly link the representation of the rotation in
spherical form with its inverse rotation in the Carte-
sian representation, but fail to note that the inverse
rotation should be associated with the Wigner rota-
tion matrix elements. The correct correspondence
between the physical rotation of the system and its
Cartesian and spherical tensor transformations is sig-
nificant, particularly in structural studies where con-
nections back to a molecular frame are made. As the
spatial components of the NMR Hamiltonian are
tied to the molecular frame of reference, they rotate
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(b) :

X

J

Figure 2 Two orientations of glycine in the laboratory frame related by an active rotation
Ra (“ z “) of the molecular coordinates. The standard CPK scheme is used to designate

463

the atom colors (H, white; C, gray; N, blue; O, red).

with the molecule. The result is that in many cases
the transformation effected by the application of Eq.
[27] has been the opposite of what was intended or
expected. For example, Haeberlen (3) uses Eq. [27]
with the Wigner matrix elements from the passive
perspective, so is actually performing an active rota-
tion of the tensors (and molecules). Mehring (4), as
well as Spiess and Schmidt-Rohr (20), use the active
Wigner rotation matrix elements and Eq. [27], so are
actually performing a passive rotation.

EXAMPLE: THE TRANSFORMATION OF A
CHEMICAL SHIELDING TENSOR

As a worked example, the transformation of the ab ini-
tio chemical shielding tensor for the alpha carbon of
glycine in the gas phase is considered. This is done in
three ways. In method I, the ab initio chemical shield-
ing tensor is calculated directly using Gaussian03 (22)
for an initial and rotated orientation. In method II, the
transformed tensor is calculated from the initial tensor
and the rotation matrix in Cartesian form (Eq. [4]). In
method III, the transformation is effected using spheri-
cal tensors and the coefficient equation (Eq. [26]). To
be consistent, all three of these must agree.

Figure 2(a) shows the geometry optimized struc-
ture of glycine in the gas phase calculated using
Gaussian03 (B3LYP, 6311++4G**), in which the
molecular orientation in the laboratory (observer)-
fixed coordinate frame is chosen by the program dur-
ing refinement to be the standard nuclear orientation,
with the principal axes of the moment of inertia ten-
sor aligned along the three Cartesian axes. Figure
2(b) shows the same molecule in which the atomic
Cartesian coordinates from Figure 2(a) have been
rotated according to

a
ﬁ R(nﬂ:n) ;a
= Ra\7 o5
b 46’3 La
1 /3 5 /1 1 /1
Z\/; Z\éii x4
= 3 /3 1 /1 1 /1 a
Z\/; /1 2\/3 ;,’ 321
_1 V3 V3
1 i 2

where the superscripts a and b refer to the initial and
final molecular orientations, respectively, shown in
the corresponding figures. In this expression, the
new molecular orientation is considered to be the
result of an active rotation with Euler angles
Qp = {a=2B=2Zy=72}. However, the orienta-
tion in 2(b) could equally be considered the result of
a passive rotation with Euler angles Qp = {(x =-5
B = —% v = —%}: either way, the numerical form of
the rotation matrix and the orientations shown in Fig-
ure 2 would be the same.

For the alpha carbon, the calculated ab initio
chemical shielding tensors (Gaussian03, B3LYP,
6311++4G**) corresponding to the molecular orien-
tations in Figure 2(a) and 2(b) are

151.5 —-87 15
c’=1| —-69 131.0 -5.0 [33]
51 =28 1194

and

1290 1.2 0.1
o’'=1 06 1520 —-109 [34]
-3.1 =77 1209

(in ppm). The additional superscript on the latter is
meant to signify that it was calculated using method 1.
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The chemical shielding tensor for orientation b
can also be directly calculated from the tensor for the
initial orientation and the rotation matrix using
method II, direct matrix multiplication in the Carte-
sian representation,

I TAMT ,o ((TAT
RUN » S i RI(ZZZ
¢ A(4’6’3) 7 A (4’6’3)
1200 12 02
—| 06 1520 —109 |. 35]

-3.1 -=7.8 1209

This agrees with method I within the expected com-
putational accuracy.

Finally, method III can be used, which employs
the use of spherical tensors. First, the initial chemical
shielding tensor is decomposed into its spherical
components by calculating the coefficients (Eq. [21])

of, = {1} 0}, [36]

for k = {0,1,2} and j = {—,...,k}. These transform
according to the coefficient equation (Eq. [26]) to
give the coefficients for orientation b,

k
b _ (k) a
Okq = Z;qu (QRA(g‘g,g)) Oy (37]
j=—k

Here again, the Wigner rotation matrix elements will
have the same numerical values whether we consider
this an active rotation with Euler angles Qx = {a =1
B =% v =75} or a passive rotation with Euler angles
Qp = {a=-%Bp=-%y=-2} Once calculated,
the full chemical shielding tensor for orientation b
can be reconstituted according to Eq. [20] as

2 k
bII b
oM =3"% o} Ty

k=0 j=—*k
1200 12 02

= 06 1520 —109 |, [38]
—31 -78 1209

in agreement with both methods I and II.

Note that the molecular coordinates and the tensor
transform together. This is reasonable, given that
they both correspond to quantum mechanical observ-
ables that are tied to the molecular frame of refer-
ence. Molecular frame observables also rotate in the
same sense as kets in state space, as Schmidt-Rohr
and Spiess point out (20), with a transformed molec-
ular ket

) = Ol [39]

and operator tied to the molecular frame

A=o0Aof [40]

having an expectation value that is invariant under
molecular rotation

(WA ) = (WA ). [41]

DYADIC PRODUCTS, THE NMR
HAMILTONIAN, AND REFERENCE
FRAMES

The advantage of irreducible spherical tensors is that
they isolate elements of second-rank Cartesian ten-
sors that transform together under rotation. To con-
struct the Hamiltonian directly in terms of spherical
tensor components and take full advantage of these
transformational properties, the Cartesian space, spin
operator-containing components of the NMR Hamil-
tonian are first written as a dyadic product (3, 4, 6)

SM, SM, SM,
St=S"@l=| S S, S | [42]
SM, SM, SM.

and the NMR Hamiltonian as a trace over the product
of the spatial and spin-containing Cartesian tensors

H=cM1-AM - = Tr{AM S} [43]

An analogous decomposition into the spherical tensor
basis can be applied to the dyadic product with coef-
ficients

1
S0 = _ﬁ [lex + 8,1y + SZIZ]

., 5,1,

Sto = é :
—% [S:Ic — Sil. F i(S-1y — SyL.)]

S1x1 =
$20= —[
20—\/6

§2+1 = :F% [SX]: + Szlx + l(S)IZ + S:Iy):l

3S.1. — (Suly + Syly + S.1.) |

1
§p 4 = E[lex — Syly Fi(Sudy + S,1)], [44]

allowing the Hamiltonian to be written

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmr.a

85UB01 7 SUOWWIOD BAIER.D 3(ceot(dde 8Ly Aq peusenob ae sajonJe O ‘8sn JO SaINJ 10} Akeiq | 8UlUO AB]1A UO (SUORIPUOD-PUE-SLLIBIALICD"AB 1M AR [ul [U//Sty) SUORIPUOD pue SLLB | 8y} 88S " [1202/70/0T] Uo A%eiqiauijuo A8]im ‘anbiuoios |3 uoeluswInood - 13d3,72d anbayiol(a!g AQ 220z e ILo/Z00T 0T/I0P/L0D A8 1M AReid 1 |Bul|UO//SANY WO. POPeOIuMOQ ‘G ‘TTOZ ‘E2052SST



H" = > Tr{ A* §*}

2 k 2 K
= C)\ TI‘{Z Zaijij Z Skfjkafjf}

k=0 j=—k K=0j=—k
2
= C)\ Z Z (— 1 )"akjsk —j- [45]
k=0 j=—k
Here, the identity
Tey = (-1YT) [46]

has been used to simplify the trace. Note that the
coefficients in the Cartesian dyadic product contain
spin operators, which themselves may be treated
using spherical tensors in spin space (2, 23-25), a
related but distinct issue from the representation of
Cartesian tensors in real space treated here.

The transformation of the Hamiltonian under rota-
tion in real space can now be written directly in
terms of the rotation of the Cartesian tensor in Eq.
[43] or through the transformation of the spherical
tensor coefficients, a;, in Eq. [45]. For example, if
the spatial tensor has known components in its prin-
cipal axis system (the coordinate system in which the
symmetric part of the spatial tensor is diagonal), then
the tensor components in the laboratory frame can be
calculated and combined with the spin-containing
components to give the Hamiltonian as

H)\ _ C)\ Tr{ Alab Slab}
_ O { R(ag) A R (0f) S} 1)

and

2 k 2 k
DN WAL B I

k=0 j=—k k=0 j=—k

lab ) /PAS (lab
Z Q1>As A j Sk —j» 48]

/

respectively, in Cartesian and spherical tensor forms.
Here Qlabs is the set of Euler angles that parameter-
ize the orientation of the principal axis system (PAS)
as seen by an observer in the laboratory frame. The
superscripts “lab” and “PAS” have been added to
the tensors to indicate that the components are
defined relative to an observer in those frames (and
the \ dropped from the tensors for notational conven-
ience). Both Eqs. [47] and [48] can be simplified
considerably under the secular approximation (see
Question 2).
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The Hamiltonian in Eqgs. [47] and [48] is written
from the perspective of the laboratory frame, with the
spatial tensor transformed to that frame before being
combined with the spin components (also in the labora-
tory frame) to form the Hamiltonian. While the external
magnetic field and spin operators associated with NMR
observables are tied to the laboratory frame, making
this an obvious choice for writing the tensor compo-
nents of the Hamiltonian, the trace in Eq. [43] is invari-
ant to a change in basis, so the spatial and spin tensors
in the Hamiltonian may in fact be written in any arbi-
trary frame. For example, in some cases it may be con-
venient to consider the tensor components of the Ham-
iltonian from within the spatial tensor PAS frame,

HN = Tr{ A™S §™S1, [49]

The spin tensor in the PAS must ultimately be related
back to the spin tensor in the laboratory frame, as the
latter contains the lab-frame angular momentum
operators that direct the spin dynamics, but again the
tensors are simply related by

SPAS (QE‘/;S) Slab R—l (QE&\,S% [50]

where now the Euler angles parameterize the orienta-
tion of the laboratory frame as seen by an observer in
the PAS frame.

This leads to a potential source of confusion, as
the Euler angles are defined relative to observers in
different frames in Eqgs. [47] and [49]. They are
related, however, and by comparing Eqs. [47]-[50],
and making use of the cyclic property of the trace,

H = A Tr{ R(QRs) AP R (k) S}
A PAS p—1 ((lab lab lab
=c Tr{ A" R (QPAS) s R(QPAS>}
= O Te{ AT R(ODY) S R (1))
=M Tr{ R (Q5%) A R(QPS) ¥}, [51]
it is seen that
R(QpRs) =R Q) [52]
or
R (epRs, Bras: Mpas) = R (o’ B s Vi)
=R(=7i" —Br s —h) . [53]
In other words, two observers in the lab and PAS
frames have opposite views of the rotation that takes
their frames from initial coincidence to their final ori-

entation relative to each other, exactly as one would
expect. Equation [51] also highlights that even for
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tensors written in the lab frame, the transformation of
the spatial components of the Hamiltonian to that
frame can be replaced by the application of the
inverse transformation to the spin containing dyadic
terms.

Finally, it is noted that in some cases a frame dis-
tinct from the lab or PAS may be more convenient to
work in. For example, in their classic paper on side-
band intensities under magic-angle spinning, Herz-
feld and Berger (26) choose the MAS rotor as the
frame of reference and then write both the lab frame
magnetic field/spin operators (which are now time-
dependent) and the chemical shift tensor in the rotor
frame. Question 3 below presents an alternate deriva-
tion of the Hamiltonian used as the starting point in
the Herzfeld-Berger analysis, writing the components
in the laboratory frame and using a two-step transfor-
mation of the spatial tensor from the PAS to rotor
and then rotor to lab frames.

CONCLUSIONS

The motivation behind the use of irreducible spheri-
cal tensors in NMR is that they allow the components
of second-rank Cartesian tensors to be grouped
according to their underlying rotational symmetry. In
principal, this should simplify the treatment of aniso-
tropic interactions in the NMR Hamiltonian. In prac-
tice, the inconsistent use of active and passive con-
ventions and errors in several of the classic texts on
angular momentum have kept these benefits from
being fully realized and have led in many cases to
transformations that correspond to the inverse of the
stated rotation. In situations where spectroscopic
observables are averaged over the full set of Euler
angles or no connection is made back to a molecular
frame of reference, this confusion in rotation is of lit-
tle consequence. The calculated CSA powder line
shape, for example, would be the same regardless of
whether the molecular rotation was parameterized
correctly or with an inverted sense. In cases where
absolute connections between the spatial tensor and
molecular or crystalline frames are desired, however,
these discrepancies must be reconciled.

Here a consistent approach to the transformation
of second-rank Cartesian tensors in Cartesian and
spherical tensor forms has been shown. The introduc-
tion of an explicit spherical tensor basis for the
decomposition of second-rank Cartesian tensors helps
delineate the rotational properties of the basis states
from those of the matrix elements. This provides a
uniform approach to the rotation of the physical
system and the corresponding transformation of the

spatial components of the NMR Hamiltonian repre-
sented by either Cartesian or spherical tensors.

Questions and Answers

Question 1. There is considerable latitude in choosing
either the active or passive convention for represent-
ing a transformation in NMR. For example, consider
the transformation of a chemical shielding tensor
under a change in coordinate frame of reference from
the tensor PAS to the laboratory frame. Describe this
transformation using the passive point of view and
then recast the problem using the active point of view.

Answer:

The use of the passive point of view in this con-
text is straight-forward. Letting the Euler angles
PQ}EXS parameterize the rotation that would take the
PAS frame into coincidence with the laboratory
frame, the chemical shielding tensor in the lab frame
would be written:

c lab __ RP (PQL?XS) o PAS R];I (PQ?ES) )

Alternatively, the coordinate frame transformation
could be considered to result from an active rotation
that takes the tensor PAS from initial alignment with
the laboratory frame to its final orientation in the labo-

ratory frame, parameterized by the Euler angles AQE‘RS,

01 = Ru(*0hts) o™ Ry (A0l

In this case, o5 is both the initial tensor in the labo-
ratory frame and the tensor in the PAS frame. PQ};&XS
and “QUEP ¢ are of course related; if "N = {a,B,y)
then “QU¢ =—{y,B,a}.

Question 2. Write out the chemical shielding Hamilto-
nian under the secular approximation in terms of the
PAS components, Gxx, Oyy, and Gz, and the Euler
angles, QE‘RS, that relate the PAS and laboratory
frames. Use the active rotation convention.

Answer:

(a) Using Cartesian Tensors:

The starting point for this problem is Eq. [47].
First, the following associations are made for the
chemical shielding interaction:

=7
Oxx 0 0
APAS - PAS _ 0 oyy 0
0 0 Ozz

(ignoring the antisymmetric terms),
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and

0 0 0
Sldb (B ® [)lab O O O 7
B.I, B.I, B.IL

for the static magnetic field aligned along the lab-
frame z-axis. Under the secular approximation, S"
can be further simplified by dropping the /, and I, spin
angular momentum terms, which do not commute
with the Zeeman interaction, H“**™" = vB.I,, allow-
ing the chemical shielding Hamiltonian to be written

=71 {R(Q%) o™ R(QS) }. Bl

Using the active convention for writing the rotation
matrix,

H® =y B, (Gzz cos® B+ oxx sin® B cos’y
+Gyy sin® B sin® y) ,

where Q% = {a,B,y} are the Euler angles that
would take the PAS frame from initial coincidence
with the lab frame to its final orientation in the lab
frame.

The Hamiltonian can be also be written in terms
of the isotropic shift,

c = %(Gxx + Oyy +022),
anisotropy,
d =0z — o,
and asymmetry,

_ GOyy — Oxx

as,

3cos?’P—1

1
> 5" sin® B cos2y) |.

CS:yBZIZ{GJrS(

(b) Using Spherical Tensors:
The starting point here is Eq. [48], with the same
associations given above and noting that

1
agﬁs = —7§[GXX + oyy + Gzz] \/§ c
PAS =0
5 g
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1 3
s = 76[3622 — (oxx + oyy +0z7)] = 2 S
a5 =0
pas _ 1 1
ay' 5y = 2[Gxx — Oyy| = —in 5

and

lab

00 = —

=0

secular

Sllabil = _%[lex + lBZI)’] ~

2
lab __
520 = fB~[ z
secular

1 .
s = HFE[B_,IX FiB.I,] = 0

slzab+2 =0
Equation [48] can then be written

CS lab _lab ldb ldb
H™ =vagesgo+7 a0

(0) (lab PAS (lab lab PAS clab
=7 Dgo(Qeas) @00 So0 + ¥ E Do, (QRs) @355
I==2

1
2 a
=y B.Lo+yB.I {_Dg ), (Q) \énﬁ

1
DR (O4R) 5 - DE(EkE) |/ ins)
3cos’ P —1

yBZIZ{c+6< 5

1
—5N sin? B cos 2«/)].

Question 3. In their classic paper on sideband inten-
sities under magic-angle spinning, Herzfeld and
Berger (26) write both the lab frame magnetic field/
spin operators and the chemical shift tensor in the
MAS rotor frame,

Hcs =—y TI‘{ cTrotor (B ® I)FOKOT}
=~y Tr{ R(Q5) 0™ R (@) R(Q)
(B )™ R~ (Q{ggm)}

Provide an alternate derivation of the Hamiltonian
used as the starting point in the Herzfeld-Berger anal-
ysis (corresponding to the frequency given in Eq.
[16] of their paper) by writing the components in the
laboratory frame and using a two-step transformation
of the spatial tensor from the PAS to rotor frame and
then from the rotor to lab frames. Use spherical ten-
sors and the passive rotation convention.
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Answer: Under the secular approximation, the
chemical shift Hamiltonian in spherical tensor form is

Ccs lab _lab lab _lab
H™ = —vagesoo — Y 4050

lab rotor _lab
=7 Do 0 (Qrotor) o0 Soo0
2 2
lab rotor lab
-7 § : D Qrotor 2]’ $20

=y Df)oé (o

rotor

lab (2) rotor\ _PAS lab
E , Dy 0/ Qrolor 4 (QPAS ) a4y 820
/772 ]//772

) DY) st

=—vB.l.o—vy Z Z D 2’ Ql?)l:or
j=—2ji=2

(2) rotor) _PAS lab
x Di (Qpas) a27530

= 7YB 1 6 — YB ] Z D((]Zj) Qif(i)ll)or)

J==2
rotor 1 rotor
{_D;.?)_z (e \/6115 + DY Q)
1
<o~ o) o)

Using the passive convention, the Euler angles that
would take the rotor-fixed frame to the laboratory
frame under MAS are

Qlab

Totor

= {0))‘[7 ema O}a

where

0,, = cos™! (%)

(N.B., this is just one of the possible ways in which
MAS can be parameterized). Substituting above and
simplifying the expression gives

HS = —y lez{c
+ 3 1sinzB ! cos?2 1+10052B
- _ a Z
2 4" 3
x cos(2m, + 2y)

1
+ §n8 sin2a cos B sin(2w,7 4 2v)

1 1
——=0 (1 +=ncos2a | sin2p cos(w,t+
NG ( 3N ) B cos( v)

2
+ gT]S sin 2« sin B sin(®,7 + Y)}

where the Euler angles {SX’S‘ = {a,B,y} parameterize
the rotation that would take the PAS to the rotor
frame. With some minor algebraic and trigonometric
rearrangement, this can be reduced to Eq. [16] of
their article.
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